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Abstract
The existence of a dynamical potential with both local and global meanings
in general nonequilibrium processes has been controversial. Following an
earlier heuristic argument in a letter by one of us, in the present paper we
show rigorously its existence for a generic class of situations in physical and
biological sciences. The local dynamical meaning of this potential function is
demonstrated via a special stochastic differential equation and its global steady-
state meaning via a novel and explicit form of the Fokker–Planck equation. We
also give a procedure to obtain the special stochastic differential equation for
any given Fokker–Planck equation. No detailed balance condition is required
in our demonstration. For the first time we obtain here a formula to describe
the noise-induced shift in drift force compared to the steady-state distribution,
a phenomenon extensively observed in numerical studies.

PACS numbers: 05.10.Gg, 72.70.+m

1. Formulation of the questions

A large class of nonequilibrium processes can be described by the following stochastic
differential equation [1–4]:

q̇ = f(q) + NI (q)ξ(t), (1)

where f and q are n-dimensional vectors and f a nonlinear function of q. The noise ξ is
a standard Gaussian white noise with l independent components: 〈ξi〉 = 0, 〈ξi(t)ξj (t

′)〉 =
δij δ(t − t ′) and i, j = 1, 2, . . . , l. Even in situations that equation (1) is not an exact
description, it may still serve as the first approximation for further modelling [3, 4].

A further description of the noise in equation (1) is through the n × n diffusion matrix
D(q), which is defined by the following matrix equation:

NI (q)Nτ
I (q) = 2εD(q), (2)
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where NI is an n × l matrix, Nτ
I is its transpose and ε is a non-negative numerical constant

playing the role of temperature. This relation suggests that the n × n diffusion matrix D is
both symmetric and non-negative. For the dynamics of state vector q, all that is needed from
the noise is the diffusion matrix D. Hence, it is not necessary to require the dimension of the
noise vector ξ to be the same as that of the state vector q. This implies that in general l �= n.
The difficulty for finding such a potential function can be illustrated by the fact that usually
D−1(q)f(q) cannot be written as a gradient of the scalar function [1, 3] when no detailed
balance condition is assumed in equation (1). Here and below, without loss of generality
the functions, such as f(q) and D(q), are assumed to be sufficiently smooth. The boundary
conditions will be chosen accordingly. This means that boundary conditions such as absorbing
type will not be considered here, though they can be treated as appropriate limits of the smooth
functions.

During the study of the robustness of the genetic switch in a living organism [5], it was
discovered that equation (1) can be transformed into the following form:

[S(q) + T (q)]q̇ = −∇qφ(q) + NII (q)ξ(t), (3)

where the noise ξ is from the same source as that in equation (1). The n × n matrices are the
symmetric non-negative friction matrix S and the antisymmetric matrix T, and

S(q) + T (q) = 1

[D(q) + Q(q)]
≡ M(q). (4)

Here Q is an antisymmetric matrix determined by both the diffusion matrix D(q) and the
deterministic force f(q) [6, 7]. The potential function φ(q) is connected to the deterministic
force f(q) by

∇qφ(q) = −M(q)f(q). (5)

The friction matrix S(q) is defined through the following matrix equation:

NII (q)Nτ
II (q) = 2εS(q), (6)

which guarantees that S is both symmetric and non-negative. For simplicity, we will assume
det(S) �= 0 in the rest of the paper. It is a sufficient condition for det(M) �= 0 and more general
cases are also known [6]. The breakdown of the detailed balance condition or the time-reversal
symmetry is represented by the finiteness of the transverse matrix T. The usefulness of this
formulation is already manifested in the successful solution of outstanding stability puzzle
along with new predictions in gene regulatory dynamics [5].

It was heuristically argued by one of us [7] that the global steady-state distribution ρ(q)

in the state space is, if it exists,

ρ(q) ∝ exp

(
−φ(q)

ε

)
. (7)

By construction the fixed points of the deterministic force f in equation (1) are also the extremal
points of the potential function φ in equation (3) and (7). Therefore, the potential function φ

acquires both the local dynamical meaning through equation (3) and the global steady-state
meaning through equation (7). This heuristical demonstration has been rigorously shown to
be locally valid for any fixed point, stable or unstable [6]. Two major questions, however,
remain unanswered: can the heuristical argument be translated into an explicit procedure such
that there is an explicit Fokker–Planck equation whose steady-state solution is indeed given
by equation (7)? Is the converse also true, that is, for a given Fokker–Planck equation, can the
corresponding equation (3) be found? Furthermore, are there new and significant results? In
this paper we give affirmative answers to all those important questions: the general stage is set
in section 2; The answer to the first question is given in section 3; the awswer to the converse
question is given in section 4, and new and significant results are discussed in sections 3–5.
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2. Derivation of a generalized Klein–Kramers equation

Central in the heuristical argument is the introduction of an n-dimensional kinetic momentum
p along with a mass m. This procedure brings the stochastic differential equations in close
contact with the Hamiltonian or symplectic structure central in theoretical physics. The mass
would eventually be taken to be zero to recover equation (3). The dynamical equation for the
enlarged state space is now 2n dimensions and the extended stochastic dynamical equation
takes the form [7]

q̇ = p
m

, ṗ = −M(q)
p
m

− ∇qφ(q) + NII (q)ξ(t), (8)

which is in the form of the standard Langevin physics in the (p, q) phase space. A similar
equation has been extensively studied in the literature [3, 4]. Here, we investigate it from a
different perspective, the zero-mass limit.

To proceed, we first give an independent derivation of the generalized Fokker–Planck
equation, the so-called Klein–Kramers equation [3] in a general form, corresponding to
equation (8). We will show that there is no ambiguity in the treatments of stochastic differential
equation at this stage. The probability distribution function in the (p, q) phase space is defined
by

ρ(p, q, t) ≡ 〈δ(p − p̄(t, {ξ}))δ(q − q̄(t, {ξ}))〉, (9)

where q̄(t, {ξ}) and p̄(t, {ξ}) are the solution of equation (8) for a given noise configuration
{ξ}. The distribution function ρ is obtained by averaging over all the noise configurations,
which is an ensemble average.

With variables (q̄(t), p̄(t)) following equation (8), the time derivative of the distribution
function ρ is given by

∂tρ(p, q, t) = ∇p ·
[
M(q)

p
m

+ ∇qφ(q)
]
ρ(p, q, t) − ∇q · p

m
ρ(p, q, t)

−∇p · NII (q)〈ξ(t)δ(q − q̄)δ(p − p̄)〉. (10)

Using an identity due to Novikov [8],

〈ξ(t)g[{ξ}]〉 = 〈δg[{ξ}]/δξ(t)〉 , (11)

where g is a functional of the noise {ξ}, and using the convention

δ

[∫ t

0
ξ(t ′) dt

]/
δξ(t) = 1/2, (12)

and noting that the solution of equation (8) can be formally expressed as

q̄(t) − q(0) =
∫ t

0
p̄ dt ′/m (13)

p̄(t) − p(0) = −
∫ t

0
[M(q̄)p̄/m − ∇q̄φ(q̄) + NII (q̄)ξ ] dt ′, (14)

we have the following relations:

δq̄(t)/δξ(t) = 0, (15)

δp̄(t)/δξ(t) = Nτ
II (q̄)/2. (16)

The last term on the right-hand side of equation (10) is thus given by

−∇p · NII (q)〈ξ(t)δ(q − q̄)δ(p − p̄)〉 = ∇p · NII (q) 1
2Nτ

II (q)∇pρ(p, q, t), (17)
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Combining equations (10) and (17), we obtain the Klein–Kramers equation, a special
form of the Fokker–Planck equation,

∂tρ(p, q, t) = ∇p ·
[
M(q)

p
m

+ ∇qφ(q) + εS(q)∇p

]
ρ(p, q, t) − ∇q · p

m
ρ(p, q, t). (18)

A special case of equation (18) has been known [3]. Here we have generalized it to any
allowed matrix M. It has the stationary solution, if it exists,

ρ(p, q) = exp

(
−

[
p2

2m
+ φ(q)

]
ε

)
, (19)

which holds for all possible values of mass m.
We should point out that starting from equation (8) same equation (18) can be arrived

by either Ito or Stratonovich prescription of stochastic integration, because ∇τ
pM(q) = 0.

Equation (19) has been used in the heuristic demonstration [7], to make use of its insensitivity
to various treatments of stochastic differential equation.

3. Zero-mass limit and the desired Fokker–Planck equation

Now we are ready to take the zero-mass limit and to derive the Fokker–Planck equation
corresponding to equation (3). We first define following two operators:

L1 ≡ ∇τ
pM(q)

[
ε∇p +

p
m

]
, (20)

L2 ≡ − p
m

· ∇q + ∇qφ(q) · ∇p. (21)

With those two operators, equation (18) becomes

∂tρ(p, q, t) = (L1 + L2)ρ(p, q, t). (22)

The antisymmetric properties ∇τ
pT (q)∇p = 0 and pτ T (q)p = 0 are used in the above equation.

There are various ways to eliminate the fast degrees of freedom of q implied in the zero-
mass limit, such as the dynamical renormalization method [9] and the projection operator
method [4, 10, 11]. In the following, we adopt from Gardiner [4] the standard projection
operator method for its conciseness. For further exposition of this method, we refer readers
to [10, 11].

Following Gardiner, we introduce a projection operator

Ph(p, q, t) ≡ 1

(2πmε)n/2
exp

(
− p2

2mε

)∫
h(p′, q, t) dnp′, (23)

where h is an arbitrary function of p, q.
The eigenvalues of the projection operator can only be zero or one,

P 2 = P, (24)

which follows from the relation

P 2h(p, q, t) = 1

(2πmε)n/2
exp

(
− p2

2mε

)∫
dnp1

(2πmε)n/2
exp

(
− p2

1

2mε

) ∫
h(p2, q, t) dnp2

= 1

(2πmε)n/2
exp

(
− p2

2mε

)∫
h(p′, q, t) dnp′

= Ph(p, q, t). (25)
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From the fact (
ε∇p +

p
m

)
exp

(
− p2

2mε

)
= 0, (26)

we obtain the identity

L1P = 0. (27)

Since L1 is a total derivative operator, for any function h(p, q, t) that is well behaved at the
boundary (infinity), the function PL1h(p, q, t) vanishes, because

PL1h(p, q, t) = 1

(2πmε)n/2
exp

(
− p2

2mε

) ∫
∇τ

p′M(q)

[
ε∇p′ +

p′

m

]
h(p′, q, t) dnp′

= 1

(2πmε)n/2
exp

(
− p2

2mε

) ∮
B.C.

dS · ∇τ
p′M(q)

[
ε∇p′ +

p′

m

]
h(p′, q, t)

= 0,

where dS is the surface element with direction. From the last two identities, we can see that
the operator L1 is orthogonal to the projection operator P. We further have PL2P = 0, due to
the inversion symmetry in the p-space,∫

dnp

(2πmε)n/2

[
− p

m
· ∇q + ∇qφ(q) · ∇p

]
exp

(
− p2

2mε

)
= 0. (28)

To proceed, we first separate the distribution function into the projected part v(p, q, t) ≡
Pρ(p, q, t) and unprojected part w(p, q, t) ≡ (1−P)ρ(p, q, t). We further define the reduced
distribution function ρ(q, t) through the projected part:

v(p, q, t) ≡ 1

(2πmε)n/2
exp

(
− p2

2mε

)
ρ(q, t). (29)

The dynamical equations for v and w can be obtained separately from equation (22)

∂tv = P∂tρ = P(L1 + L2)(v + w) = PL2w, (30)

∂tw = ∂tρ − P∂tρ = (L1 + L2)w + L2v − PL2w. (31)

After the Laplace transformation h̃(s) = ∫ ∞
0 h(t) exp(−st) dt, these two equations take the

form ṽ − v(0) = PL2w̃ and sw̃ − w(0) = (L1 + L2)w̃ + L2ṽ − PL2w̃. The latter expression
is equivalent to

w̃ = [s − L1 − (1 − P)L2]−1[L2ṽ + w(0)]. (32)

We note that following equation (8) the relaxation time for p dynamics is of the order of
m. In the zero-mass limit, this relaxation time is very short. After sufficiently long time, that
is, t 	 m, which is still short comparing to the dynamics of the q, the momentum distribution
is essentially described by the white noise and its fluctuation range is of the order of

√
m. Its

mean distribution would be determined by the slow dynamics of q. Therefore, we are looking
for the low-frequency behaviour of the transformed equation: the leading contribution when
s � 1/m. At low frequency, to the leading order of m, the momentum p scales with

√
m,L1

is of the order of 1/m and L2 is of the order of 1/
√

m. Hence, at low frequency to the leading
contribution ordered by m, equation (32) leads to

w̃ = −L−1
1 L2ṽ + O(m), (33)

which is a precise statement on the adiabatic following the kinetic momentum p to the
coordinate q. The equation for v is thus given by

∂tv = −PL2L
−1
1 L2v + O(

√
m). (34)
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We recall an identity to be used. The operator L1 has a null space and its inverse operator
is not well defined unless in the space orthogonal to the null space. For an arbitrary vector
c(q) which has no p-dependence, the following identity holds:

L1p · c(q) exp

(
− p2

2mε

)
= ε∇p · M(q)c(q) exp

(
− p2

2mε

)

= − p
m

· M(q)c(q) exp

(
− p2

2mε

)
. (35)

We note that L2v takes the form of the right-hand side of equation (35), and is therefore
orthogonal to the null space of L1. The inverse operator L−1

1 is then well defined. Using the
inverse relation of equation (35) we arrive at the desired identity:

L−1
1

p
m

· c(q) exp

(
− p2

2mε

)
= −p · M−1(q)c(q) exp

(
− p2

2mε

)
. (36)

With the above identity, the right-hand side of equation (34) is given by

−PL2L
−1
1 L2v = PL2L

−1
1

p
m

·
[
∇q +

1

ε
∇qφ(q)

]
v

= ∇q · M−1(q)[ε∇q + ∇qφ(q)]v. (37)

Therefore in the zero-mass limit, m → 0, the equation for the integrated probability
distribution ρ(q, t) defined in equation (29) takes the form, as a direct consequence of
equation (34) and (37),

∂tρ(q, t) = ∇qM
−1(q)[ε∇q + ∇qφ(q)]ρ(q, t). (38)

This is the sought Fokker–Planck equation corresponding to equation (3). We point out that
in the above derivation we take the mass to be zero, keeping other parameters, including the
friction and transverse matrices, finite. On the other hand, in the usual Smoluchowski limit it
is the friction matrix that has to be taken as infinite, keep all other parameters finite. Those
two limits are in general not interchangeable.

The equilibrium configuration solution of equation (38) is the same as equation (7).
Again, we emphasize that no detailed balance condition is assumed in reaching this result.
This completes our answer to the first question of finding the corresponding Fokker–Planck
equation.

4. Converse problem

We now address the second main question that for any given Fokker–Planck equation there is
the corresponding stochastic differential equation, i.e. equation (3). We will give an affirmative
answer, which closes a logic gap in the light of present formulation. The procedure to
carry it out is already implicitly contained in equation (38), a typical situation in theoretical
physics that if the answer is known a procedure to obtain it can be easily found. In addition,
the demonstration in this section also supplements above rather abstract projection operator
demonstration.

A generic Fokker–Planck equation for the dynamics of probability density in state space
may take the form

∂tρ(q, t) = ∇τ
q [εD(q)∇q − f(q)]ρ(q, t). (39)

Here D(q) is the diffusion matrix and f(q) is the drift force. A potential function φ(q) can
always be defined from the steady-state distribution. This has been extensively studied in
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mathematics [12]. Given the existence of the potential function, the procedure is particularly
simple.

Using M−1(q) = D(q) + Q(q) [7], equation (38) can be rewritten as

∂tρ(q, t) = ∇τ
q

[
εD(q)∇q − ε

(∇τ
qQ(q)

)τ
+ [D(q) + Q(q)]∇qφ(q)

]
ρ(q, t). (40)

The antisymmetric property of the matrix Q(q) has been used in reaching equation (40). Thus,
comparing between equation (39) and (40), we have D(q) = D(q), φ(q) = φ(q), and

f(q) = f(q) − ε
(∇τ

qQ(q)
)τ

. (41)

In reaching equation (41) we have used the relation [D(q) + Q(q)]∇qφ(q) = −f(q). The
explicit equation for the antisymmetric matrix Q is

−ε
(∇τ

qQ(q)
)τ

+ [D(q) + Q(q)]∇qφ(q) = −f(q). (42)

The solution for Q can be formally written as

Q(q) = −1

ε

∫ q

dq′[f(q′) + D(q′)∇q′φ(q′)] exp

(
φ(q′) − φ(q)

ε

)
+ Q0(q) exp

(
−φ(q)

ε

)
.

(43)

Here Q0(q) is a solution of the homogeneous equation ε∇τ
qQ(q) = 0, and the two parallel

vectors in the integrand, such as dq′ f(q), form a matrix. This completes our answer to the
converse question of finding the corresponding stochastic differential equation in the form of
equation (3) from any given Fokker–Planck equation.

We note that the shift between the zeros of the potential gradient and the drift force is
given by, from equation (41),

	f = −ε
(∇τ

qQ(q)
)τ

, (44)

that is, the extremals of the steady-state distribution are not necessarily determined by the
zeros of drift force f. To our knowledge this is the first time that such an analytic formula for
the shift is obtained.

It is worthwhile to point out that a construction similar to that of above was discussed in
[13]. In order to obtain the desired potential function, several additional conditions, including
one similar to set ∇qQ(q) = 0 (4.18), were required in [13]. Our present demonstration
shows that there is no need for those conditions. Hence, our construction may be regarded as
a generalization of the corresponding one in [13].

5. Discussions

Attempts to decompose the dynamics into the dissipative and transverse parts were extensively
explored in the literature in the framework of Fokker–Planck equation [14, 15]. Though
conceptually the basic ideas in the literature are similar to what discussed here, the present
demonstration shows that in general there is no apparent separation between the friction
and the transverse matrices implied in those previous works, because the gradient of the
antisymmetric matrix Q in equation (41) is in general not zero. The antisymmetric matrix Q
should be determined by both diffusion matrix D and deterministic force f in equation (1) or
by both friction and transverse matrices in equation (3). Furthermore, the connection between
the local micro-dynamics describing by equation (3) and the global macro-dynamics discussed
in equation (41), or equation (42) or (43), was not discussed in [14, 15]. In fact, the present
authors were not aware of such a connection prior to 2004 [6, 7]. We should remark here that
the special form of the stochastic differential equation, i.e. equation (3), is consistent with the
formulation of dissipative dynamics from first principles [10, 16].
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If the antisymmetric matrix Q is zero, there would be no shift between the zeros of drift
force and the potential gradient according to equations (38) and (39). The drift force in
this case can be expressed as f(q) = −D(q)∇qφ(q), exactly the detailed balance condition.
However, even if D is independent of the state vector, that is, there is no difference between
Ito and Stratonovich treatments of stochastic differential equations, the antisymmetric matrix
Q can still be state vector dependent. There would still be a shift between the zero of the
potential gradient and the drift force. This is precisely what have been found in numerical
studies on noise-induced phase transitions and bifurcations [17]. Equation (44) is a formula
for this shift, which appears for the first time in the present paper.

There is an apparent disagreement between the singular behaviours found in the escape
path study [18, 19] and a possible smooth potential function implied in the present study. While
a detailed study on this feature is beyond the present paper, which will be reported elsewhere,
we point out two main factors which are responsible for this apparent disagreement. The first
factor is the difference in specifying the stochastic integration procedures. This difference
results in a shift between the zeros of drift force and extremals of the steady-state distribution,
described by the shift formula, equation (44). The second factor is that in [18] and [19] the
focus is on the escaping rate and the corresponding escaping path, not on the steady-state
distribution. The emergence of singularity is then not surprising, because its sensitivity to the
dynamical elements, the transverse matrix T and the friction matrix S, in addition to the noise
strength specified by ε.

Finally, there is another immediate and testable prediction from the present formulation.
The limit cycle dynamics, abundant in nonequilibrium processes, has been used as a prototype
example to argue against the existence of potential function. Not only our formulation suggests
its existence in the sense of equations (3), (7) and (38), which is natural in theoretical physics,
also it should take the same value along the limit cycle [20].
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